vydyne 909 Series data sheet

Product Description

Vydyne[®] 909 Series resins are 25% glass-fiberreinforced, ignition resistant Nylon 66 resins with (UL) 94V-0 flammability ratings. Available in

natural and black. Lubricated for machine feed and easy mold release. Vydyne 909 Series resins are modified with halogenated and other ignition resistant additives to provide users with a product that meets Underwriters Laboratories (UL) 94V-0 flammability classifications down to thicknesses of 0.03 inches and 95-5VA thicknesses down to 0.06 inches.

Vydyne 909 Series resins are designed for use in high-performance applications requiring high rigidity and strength in addition to (UL) 94V-0* flammability classification. Vydyne 909 Series resins provide good toughness for high-quality, crack-resistant molded parts, efficient regrind utilization, and good melting resistance to soldering operations. These properties make it a candidate to replace glass/FR polyesters and thermosets, such as phenolics or ureas, in many applications.

Typical Applications/End Uses

The combination of 94V-O flammability characteristics and high rigidity and strength makes Vydyne 909 Series resins ideal for appliance, electrical/ electronic, and industrial applications. Typical applications include fire sprinkler system components, television tuner parts and casings, electrical connectors, terminal strips/blocks, circuit board standoffs, circuit breakers, switch components, relays, coil forms, business machine/computer components and electrical spacers, rings, receptacles, and housings.

Typical Properties for Vydyne 909 Series

Test temperature 23°C unless otherwise noted

Physical Properties	Test Conditions	Dry as Molded	Conditioned 2.5% Moisture
Specific Gravity (g/cm3)	ISO 1183	1.47	-
Mold Shrinkage (%)	ISO 294-4		
2 mm - Parallel		0.4	—
2 mm - Normal		1.0	-
Water Absorption @ 23°C (%)	ISO 62		
24 Hours		0.7	_
Equilibrium at 50% RH		1.5	—
Mechanical Properties	Test Conditions	Dry as Molded	Conditioned 2.5% Moisture
Tensile Strength @ Yield (MPa)	ISO 527	—	-
Tensile Strength @ Break (MPa)	ISO 527	132	90
Elongation @ Yield (%)	ISO 527	—	—
Elongation @ Break (%)	ISO 527	2.2	3
Tensile Modulus (MPa)	ISO 527	9,100	7,100
Poisson's Ratio	ISO 527	0.37	_
Flexural Modulus (MPa)	ISO 178	8,300	5,000
Flexural Strength (MPa)	ISO 178	193	140
Notched Charpy Impact (KJ/M2)	ISO 179		
23°C		9.4	_
-30°C		9.5	_
Unnotched Charpy Impact (KJ/M2)	ISO 179		
23°C		40	_
-30°C		35	_
Notched Izod Impact (KJ/M2)	ISO 180	9	_
Thermal Properties	Test Conditions	Dry as Molded	Conditioned 2.5% Moisture
Melting Point (°C)	ISO 3146	250	—
Heat Deflection Temperature (°C)	ISO 75		
1.82 MPa		230	—
0.45 MPa		250	—
Vicat @ 50N (°C)	ISO 306	233	—
Coefficient of Linear Thermal Expansion	ISO 11359		
2 mm - Parallel, 23°C-55°C (10-5 mm/mm/°C)		<u> </u>	<u> </u>
2 mm - Normal, 23°C-55°C (10-5 mm/mm/°C)		<u> </u>	—
Electrical Properties	Test Conditions	Dry as Molded	Conditioned 2.5% Moisture
Dielectric Strength (kV/mm) (step-by-step) 3.0 mm	IEC 60243	13	—
Volume Resistivity (ohm-cm x 1015) 3.0 mm	IEC 60093	1	—
Comparative Tracking Index (volts) 3.0 mm	IEC 60112	175-249	-

Flammability Properties for Vydyne 909 Series

Flammability Properties	Test Conditions	Dry as Molded
Glow Wire Flammability Index (GWFI/°C)	IEC 60695-2-12	
0.71 mm		960
1.5 mm		960
3.0 mm		960
Glow Wire Ignition Temperature (GWIT/°C)	IEC 60695-2-12	
0.71 mm		750
1.5 mm		750
3.0 mm		800
Limiting Oxygen Index (%)	ASTM D-2863	29

Typical Molding Conditions for Vydyne 909 Series

Optimal processing conditions will depend on such features as machine size, screw design, die design, and material residence time. The settings below are a guide to achieving stable processing and good part quality. It is best to use a hand-held pyrometer to measure stock melt temperature in an air shot.

Underwriters Laboratories Recognized Component Ratings

Yellow Card File Number E70062

Color: All

Parameters Test		Thickness (mm)		
Parameters	Conditions	0.81	1.5	3.0
Temperature Index (°C)	UL 746B			
Electrical		130	130	130
Mechanical w/Impact		65	95	95
Mechanical w/o Impact		110	110	110
Hot Wire Ignition (Rating)	UL 746A	0	0	_
UL94 Flammability Class (Rating)	UL Flame Test	V-0	V-0, 5VA	V-0, 5VA
High Amperage Arc Ignition (Rating)	UL 746A	0	0	-
High Volt Track Rate (Rating)	UL 746A	-	-	4
D495 Arc Resistance (Rating)	UL 746A	-	-	6
UL 746A Track Rate (CTI) (Rating)	UL 746A	-	-	2

Virgin and regrind up to 50% by weight have the same basic material characteristics.

All numerical flame spread ratings appearing in this data sheet are not intended to reflect hazards presented by this or any other material under actual fire conditions. Each end user should determine whether potential fire hazards are associated with the finished product and whether Vydyne resin is suitable for the particular use. Products made from Vydyne resins should not be exposed to open flames. In the case of direct exposure to open fire, Vydyne resins and products made therefrom can ignite and burn. Always store and use finished products in locations well away from open flames and sources of ignition.

Suggested Machine Conditions Melt Temperature, °C 255 to 270

Parameters	Machine Settings	
Cylinder Settings °C	235 to 270	
Mold Surface Temperature, °C	20 to 90	
Injection Pressure, MPa	55 to 140	
Holding Pressure, MPa	55 to 140	
Injection Time, sec	< 1 to 2.5	
Screw Back Pressure, MPa	0.2 to 1.0	
Screw Speed, rpm	60 to 120	
Cushion, mm	3.0 to 6.4	
Clamp Pressure, tons/cm2	0.3 to 0.7	

vydyne 909 Series data sheet

Suggested Guidelines for Molding

1. Your Vydyne nylon resins arrive packaged in moisture-protected containers. If you do not open the original package prior to use, then drying is not necessary. However, if drying is necessary, we recommend that you use a dehumidified air- type dryer (desiccant bed) with a maximum air temperature of 70°C for 1 to 3 hours.

2. The recommended melt temperatures for Vydyne ignitionresistant resins are 255 to 270°C. Measure the stock in an air shot with a hand-held pyrometer. In addition to the barrel heater bands, screw back pressure and rotation speed add heat to the melt.

Maintain mold surface
temperatures in a range of 20 to
90°C. We recommend temperatures

on the high end, as the molding cycle allows, to aid in mold filling and to improve the appearance of the molded part.

4. Injection fill rates should be fast. Minimize the use of back pressure 0.2 to 1.0 MPa to yield a consistent melt and/or adequate mixing of color concentrates. Set the screw rotation speed at the minimum required to maintain the molding cycle (60 to 120 rpm).

5. Hold pressure should be set high enough to prevent screw bounce. Hold time should be set until the gate freezes.

6. Maintain your machine's shotweight-to-barrel-size ratio at 40% to 80% of rated (polystyrene) capacity. A lower shot-to-barrel ratio results in excess residence time and polymer degradation, which can permanently embrittle the molded part. At a shot-to-barrel ratio above the recommended ratio, molding machinery is often unable to deliver a uniform melt or the desirable fast mold fill.

7. Regrind must be dry when molded. The preferred procedure is to grind and reuse immediately after molding. Regrind-to-virgin ratios of 25% or less have shown no significant property loss when properly molded. However, to ensure adequate performance of your molded part, determine acceptable levels for each application through actual part testing.